
Cahiers
enbergGUTGUTGUT

m THE PDFTEX PROGRAM
P Hàn Thế Thành

Cahiers GUTenberg, n 28-29 (1998), p. 197-210.

<http://cahiers.gutenberg.eu.org/fitem?id=CG_1998___28-29_197_0>

© Association GUTenberg, 1998, tous droits réservés.

L’accès aux articles des Cahiers GUTenberg
(http://cahiers.gutenberg.eu.org/),
implique l’accord avec les conditions générales
d’utilisation (http://cahiers.gutenberg.eu.org/legal.html).
Toute utilisation commerciale ou impression systématique
est constitutive d’une infraction pénale. Toute copie ou impression
de ce fichier doit contenir la présente mention de copyright.

http://cahiers.gutenberg.eu.org/fitem?id=CG_1998___28-29_197_0
http://cahiers.gutenberg.eu.org/
http://cahiers.gutenberg.eu.org/legal.html

Cahiers GUTenberg n̊ 28-29 — Congrès EuroTEX mars 1998 197

The pdfTEX Program

Hàn Thé̂ Thành

Faculty of Informatics
Masaryk University
Brno, Czech Republic

Abstract. pdfTEX is an extension to TEX which allows the user to generate either

DVI or PDF as the primary output format without requiring the use of DVI as an

inter-language. The current feature set of pdfTEX is discussed, and further extensions

which are currently under consideration for adoption are reviewed.

1. Introduction

pdfTEX (formerly known as TEX2PDF) is a variant of TEX which allows the user
to opt for either traditional (DVI) or alternative (PDF) output without requir-
ing a post-translator. At present, the “normal way” to create PDF consists of
(1) compiling TEX source file to DVI file which contains \special commands for
PDF support; (2) converting DVI file to PostScript by some DVI-to-PostScript
driver (dvips, DVIPSONE,. . .); (3) translating PostScript file to PDF by some
PostScript-to-PDF translator (Acrobat Distiller, Ghostscript,. . .). An-
other way is to use Sergey Lesenko’s DVIPDF, a DVI-to-PDF driver, which can
simplify this process by eliminating the need for PostScript generation. Now
pdfTEX can produce directly DVI file as well as PDF output from a TEX source
without generating DVI.

pdfTEX is based on the traditional (Pascal) WEB source of TEX, and much
of it is implemented as a normal changefile, but some parts which re-
quire functionality which is poorly supported by Pascal WEB are implemented
as modules in the ‘C’ language. As a result, pdfTEX is currently avail-
able only for WEB2C implementations of TEX, but these cover many plat-
forms including multiple flavours of UNIX as well as 32-bit Windows (’95,
NT,. . .), Amiga and MS/DOS. The definitive sources may be found at
ftp://ftp.cstug.cz/pub/tex/local/cstug/thanh/pdftex/ and these are
regularly mirrored by CTAN as /systems/pdftex/.

198 Hàn Thé̂ Thành

Work on the project began as a post-graduate project towards a Master’s degree
within the Faculty of Informatics at Masaryk University, Brno (Czech Repub-
lic) under the supervision of Prof. Jǐŕı Zlatuška, who was also responsible for
suggesting the project in the first place.

2. Portable Document Format

2.1. What is PDF?

Adobe’s Portable Document Format (PDF) [1] is a file format derived directly
from Adobe’s PostScript language. Whilst PostScript was (and is) intended pri-
marily as a page-description language which will normally be interpreted within
dedicated printer logic, PDF is aimed far more at on-screen display, document
exchange, and hypertextual applications. A PDF document is usually smaller
than the equivalent PostScript document, has better-defined structure, allows
for both intra- and inter-document links, but lacks the procedural elements
which allow a PostScript file to perform (sometimes quite significant) compu-
tation within the printer engine.

As well as defining the language/format PDF, Adobe have also produced a
suite of tools for creating, viewing, printing, indexing, searching and modify-
ing PDF documents. This suite, called Adobe Acrobat, is available for a wide
range of platforms, and the Acrobat Reader is in fact available entirely free of
charge. The Reader integrates perfectly with modern web browsers, and the
combination allows both local and remote PDF documents to be viewed within
the same window as analogous HTML documents. Modern web search engines
such as InfoSeek’s “UltraSeek” search, classify and catalogue PDF documents
in an entirely transparent manner. L. Peter Deutsch’s Ghostscript interpreter
can also both interpret and generate PDF, and at least one far-Eastern software
company has already produced a PDF reader/viewer which can cope with the
more complex font requirements of languages such as Korean, Japanese and
Chinese.

2.2. PDF and DVI: a comparison

Although PDF is more compact than the equivalent PostScript, DVI is even
more compact, since the latter was intentionally designed to be as compact as
possible and uses variable-length data structures for maximal efficiency. With
many years of experience of interpreting DVI, authors of DVI previewers have
achieved extremely high rates of interpretation and display, and some (for ex-

The pdfTEX Program 199

ample Eberhard Mattes’ DVISCR family) combine high-speed interpretation and
display with very effective anti-aliasing/grey-scaling.

On the other hand, DVI treats both fonts and graphics as essentially “hands-
off” concepts, preferring to regard both as rectangular black boxes about which
it knows (and wants to know) as little as possible. Furthermore, the widespread
use of exotic fonts, and/or use of TEX’s \special primitive to convey additional
information to the DVI driver, has resulted in a device-independent format
which all too often has device-dependent data embedded within it. As a result,
DVI is acceptable only within the rather incestuous TEX community, and for
portability DVI files are routinely converted to PostScript (and more recently
to PDF) before being sent to those outside of the TEX community.

Although TEX has traditionally generated DVI as its primary output format,
TEX’s creator and author (Prof. Donald E. Knuth) has himself said or writ-
ten on more than one occasion that he had long envisaged that a variant of
TEX might elect to use an alternative output format, and although Knuth had
PostScript in mind, Adobe’s PDF turns out to be an even better candidate
for such purposes. It is a very compact language, already well-established as
a de facto standard portable document format both on and off the web, and
its deliberate omission of the procedural elements of PostScript ensures that it
is efficient enough to be used for direct screen display as well as for less time-
critical applications such as printing. A very significant benefit of the adoption
of PDF as the primary output format for TEX is the ability to mutate fonts
on the fly, by linear or anamorphic scaling. Such font mutations, used with
great discretion, could potentially allow pdfTEX to produce even higher qual-
ity output than TEX, since the latter can only distribute white space between
words whilst font mutation could allow the glyphs themselves to be minutely
adjusted to improve the overall æsthetics of the page. This idea, sublimely
demonstrated in Zapf and Karow’s HZ system, could well drastically reduce, if
not completely eliminate, the ‘‘Overfull \hbox badness 10000’’ problem
which besets TEX users attempting to typeset to a narrow measure without
requiring the adoption of overt letter-spacing to which Knuth has always (and
with great justification) been opposed.

2.3. Eliminating DVI as an interlanguage

Long before pdfTEX became a reality, Sergey Lesenko had designed and imple-
mented a DVI-to-PDF interpreter called DVIPDF. Although this program has
had a very restricted distribution (many TEX users have found it impossible
to locate a copy), knowledge of its existence frequently provokes the question
“why modify TEX when all that is necessary can be accomplished with the

200 Hàn Thé̂ Thành

DVIPDF driver?”. There are many answers to this question, some philosophical
and some extremely practical.

— By induction, one can ask “why bother to write DVIPDF at all?”, since
TEX can be persuaded to generate PDF using DVI and PostScript as
interlanguages.

— By the time TEX has shipped out a completed page of DVI, much poten-
tially useful information has already been lost. Only by modifying TEX
to output PDF directly, and by integrating the generation of PDF with
TEX’s “digestive tract”, can such information be retained and captured
within the PDF file. This allows, for example, an extremely simple and
elegant implementation of hyperlinks, the beginning and end of which
can span multiple lines or even pages. To accomplish this using DVI as
an interlanguage requires heavy use of \specials and even then some
functionality is lost unless TEX is modified. PDF also allows the re-use of
(potentially large) data structures, a concept completely unknown within
DVI.

— The PDF which is generated by pdfTEX is usually more compact than
that generated using DVI as an interlanguage, since only TEX has detailed
knowledge of the data structures (boxes, etc.) of which the PDF is a
representation.

— And finally, only by integrating PDF generation within TEX itself can
we gain access to the font-mutating possibilities which may in the future
allow the implementation of dynamic font mutation for microjustification,
etc.

3. Implementation issues when generating PDF

3.1. Basics

The current implementation of pdfTEX is based on WEB2C and may be divided
into two parts, a TEX-specific part and a driver-specific part.

The TEX-specific part consists of several elements:

(a) code to generate PDF pages rather than DVI pages;
(b) code to process virtual fonts;
(c) additional primitives required to control the PDF-generation process.

Of these, (a) is clearly a fundamental necessity, and (b) is required because
there is no longer a driver! Since pdfTEX is its own device driver (for the

The pdfTEX Program 201

pseudo-device PDF), it must perform all of the font processing which drivers
normally perform. As virtual-font handling is well documented in terms of a
Pascal WEB implementation, this part is implemented as part of the general
pdfTEX changefile whilst (as we shall see shortly), more demanding font access
routines such as those necessary to decode Adobe type-1 fonts are implemented
in ‘C’. The additional primitives, required for the implementation of hyperlinks,
bookmarks, etc., are also implemented as a part of the general WEB changefile.

The driver-specific part consists of a set of source files which implement the
components that are most directly concerned with the device-driver aspects of
the system. Since these need relatively little access to TEX’s data structures, and
since they demand rather sophisticated facilities in terms of random access to
files, dynamic memory allocation and deallocation, etc., they have been written
in ‘C’. It is appreciated that this may prove an obstacle when attempting to
port pdfTEX, since not all TEX implementations are based on WEB2C, but in the
opinion of the author the time saved by developing these components in ‘C’
outweighs the (relatively minor) disadvantages. Further thought will have to be
given to this problem if an attempt is made to unify the development of pdfTEX
and ε-TEX, since the latter is based on a purely Pascal-WEB implementation and
is as portable as TEX itself.

It is worth emphasizing that pdfTEX does not necessarily generate PDF!
The default mode of operation generates DVI just as does TEX, and explicit
instructions (in the document format or source) are necessary if PDF output
is to be obtained. One idea currently under discussion is that of allowing the
generation of PDF to be specified in a configuration file, thereby decoupling
the selection of PDF or DVI from the document or format source.

If PDF output is to be obtained, all fonts referenced must be accessible to
pdfTEX, with the exception of the 14 base fonts of the Acrobat Reader (Times,
Helvetica, Courier, Symbol and Zapf Dingbats). These fonts may be supplied
either as PostScript type-1 fonts or in TrueType format; bitmap fonts are not
supported since their use leads (at present at least) to virtually unreadable
documents. (This is a deficiency of the reader rather than of the font itself, but
until that problem is resolved by Adobe there seems little point in supporting
bitmap fonts.) Both font subsetting and font re-encoding are supported by
pdfTEX.

When PDF output is selected, TEX’s \special command is ignored (that is,
it does not contribute anything to the page(s) being shipped out, although
its other, more subtle, effects still take place). A new primitive, \pdfliteral,
allows raw PDF to be inserted into the PDF output stream at well-defined
points.

202 Hàn Thé̂ Thành

pdfTEX allows the direct inclusion of bitmap graphics (as opposed to bitmap
fonts). Graphics for inclusion must be expressed in PNG (Portable Network
Graphics) format, and a wide variety of tools exist to perform conversion to
and from PNG, including Image Alchemy, Paintshop PRO, and many others.
Although facilities for the inclusion of EPS images are thought highly desirable
by many, the overheads of PostScript interpretation make this an unreasonably
demanding task. More likely is the development of a facility for the incorpo-
ration of (E)PDF images, but this is not currently implemented. Hans Hagen
and Tanmoy Bhattacharya have developed a suite of macros which allow the
inclusion of both METAPOST output and of a subset of PDF files (those that
do not contain fonts, bitmaps and/or similar resources).

High-level support for pdfTEX is provided by the hyperref and graphics packages
for LATEX, and the standard pdfTEX distribution also contains modified versions
of the texinfo and manmac packages with inbuilt support for pdfTEX.

3.2. Hyperlinks

One of the most powerful features of the PDF format is the ability to establish
both intra- and inter-document hyperlinks. This facility is accessible to pdfTEX
users who have only to tag their documents to indicate the start, end and target
of the link. All of the underlying housekeeping is performed by pdfTEX itself,
including taking care of such difficulties as intervening line and/or page breaks.
The only requirement is that the hyperlink shall start and end at the same level
of box nesting. Any and all intervening boxes of the same depth are treated as
a part of the hyperlink, but boxes nested to a greater depth are not. This fea-
ture is heavily exploited by the texinfo support macros, since texinfo makes
frequent use of very long (multiline) references. Experiments have suggested
that the DVI −→ PDF route is apparently incapable of dealing with such long
references, since the intervening line breaks interfere with the computation of
the dimensions of the links. Those interested in experimenting with pdfTEX’s
support for texinfo should take a look at the file pdftexinfo.tex, which is a
plug-in replacement for the standard texinfo.tex.

3.3. Re-use of objects

The close coupling between the TEX typesetting engine and the PDF code-
generation routines makes feasible some interesting possibilities which exploit
the power of both TEX and PDF. In particular, object re-use becomes possible.
Whereas in TEX a recurring theme such as a logo in the running head(s) re-
occurs in the DVI file for every required occurrence, PDF allows such objects to
be created once and then re-referenced again and again as necessary. Such ob-

The pdfTEX Program 203

jects can be arbitrarily complicated and can contain TEX set material, graphics,
and even references to other similar objects. Rather confusingly, the canonical
Adobe term for these objects is “Forms”, and for consistency this terminology
is used in the relevant pdfTEX primitives, although it is appreciated that this
may prove a source of confusion for those unaware of Adobe’s rather individual
usage of this term. Terminology apart, such “Forms” (objects) are a powerful
efficiency tool, since a complicated recurring theme need occur only once in
the PDF file even if it is referred to (that is, printed or displayed) many many
times.

4. Future plans for pdfTEX: Improving the æsthetics

of typeset output

TEX’s algorithm for breaking paragraphs into lines is generally regarded as
optimal, and there is therefore little incentive to attempt to improve it. How-
ever, it is predicated on immutable fonts whose only flexibility lies in the
inter-word glue. However, as every TEX user knows, the algorithm leads to
rather more “underfull” or “overfull” boxes than are really desirable. Ear-
lier research [2] has shown how an iteration over a restricted set of values for
TEX’s primary paragraph-breaking parameters (\tolerance, etc.) can lead to
greatly improved æsthetics and fewer diagnostics, but at the expense of a not-
inconsiderable expenditure of time since the iteration is performed “by hand”.
Systems such as Quark Xpress overcome these problems in a quite different
way, by allowing not only the inter-word but also the inter-character spacing to
be adjusted, but the results (particularly in inexpert hands) leave a very great
deal to be desired. Zapf and Karow [4] have not only postulated but demon-
strated a very sophisticated system which makes microscopic adjustments to
the shapes of the glyphs themselves; the results are remarkable, but the work is
patented and has as yet made relatively little impact on commercial offerings.

An idea currently under investigation for pdfTEX is the incorporation of a sim-
pler version of the HZ system (and clearly one which does not violate the letter
or spirit of the patent); a first approach will be to break paragraphs as before,
but then to reduce the “badness” of individual lines by ever-so-slightly stretch-
ing or shrinking (horizontally) the font(s) which occur on that line. If this proves
successful (and perhaps even if it doesn’t), the next step will be to incorporate
knowledge of this additional degree of freedom into the paragraph-breaking
algorithm itself. A simple version can be implemented simply by anamorphic
scaling of normal fonts [3], but Adobe’s introduction of Multiple Master font
technology potentially allows for a far more powerful font-interpolation tech-

204 Hàn Thé̂ Thành

nique to be used, with unique font-instances for each line in the most general
case!

5. Short pdfTEX reference manual

pdfTEX implements a number of new primitives intended for PDF control. They
make sense only when PDF output is set. The following reference description
is specific to pdfTEX version 0.11. There may be some changes for the next
release.

5.1. pdfTEX registers

\pdfoutput: an integer parameter for output format control. Turns on PDF
output when positive, otherwise pdfTEX produces normal DVI files. This
parameter cannot be set after shipping out the first page of document. In
other words, this parameter must be set before pdfTEX ships out the first
page if one wants PDF output. This is the only parameter that must be
set to produce PDF output. The other parameters are optional.

\pdfcompresslevel: an integer parameter specifying compression level for
text and image in PDF output. 0 stands for no compression (default),
1 for fastest compression, 9 for best compression, and 2..8 for something
in between. A value out of this range will be adjusted to the nearest
meaningful value.

\pdfpagewidth: a dimension parameter specifying the page width of PDF
output file. If not specified it will be calculated as 2×(\hsize + 1 inch).

\pdfpageheight: this is similiar to \pdfpagewidth, but intended for the page
height of PDF output file.

\pdfpagesattr: a token list parameter specifying optional attributes com-
mon for all pages of PDF output file. These attributes can be MediaBox
(rectangle specifying the natural size of the page), CropBox (rectangle
specifying the region of the page displayed and printed), Rotate (number
of degrees the page should be rotated clockwise when it is displayed or
printed: must be 0 or a multiple of 90).

\pdfpageattr: this is similiar to \pdfpagesattr, but takes priority over it.
It can be used to overwrite any attributes given by \pdfpagesattr for
individual pages.

5.2. General pdfTEX primitives

\pdfimage 〈rule specification〉 〈file name〉: a command to insert a PNG image
in to PDF output. 〈rule specification〉 designates the final size of the

The pdfTEX Program 205

image in PDF output file. Dimensions which are not specified in 〈rule
specification〉 are treated as zero. If all of them are non-zero, the image
will be scaled to fit the specified dimensions. If some of them (but not all)
are zero, it will be set to a value corresponding to the remaining ones so as
to make the image size yield the same proportion of width (height+depth)
as the natural image size, where depth is treated as zero. If all of them are
zero then the image will take the natural size of it. An image inserted at
natural size often has resolution 72 DPI in PDF output file. Some images
may contain data specifying image resolution, and in such a case the
image will be scaled to the intended resolution. The filename of the image
must appear after the optional dimension parameters. The dimension of
the image can be accessed by enclosing the \pdfimage command to a box
and checking the dimensions of the box.

\pdfliteral 〈balanced text〉: this is similiar to TEX \special command, but
intended for inserting raw PDF code to page description only. pdfTEX
does not handle text specified by \special command.

\pdfinfo author〈balanced text〉 title〈balanced text〉 subject〈balanced text〉
keywords〈balanced text〉: a command to specify some general information
about the document.

\pdfcatalog pagemode〈balanced text〉 uri〈balanced text〉: a command to
specify some global options of the document. 〈balanced text〉 following
pagemode indicates how the document looks when opened and can be
/UseNone (open document with no outline), /UseOutlines (open docu-
ment with outline visible), /FullScreen (open document in full-screen
mode; there is no bar, window controls, nor any other window present in
full-screen mode). The default value is /UseNone. 〈balanced text〉 follow-
ing uri contains document-level information for URI.

5.3. Hyperlink-specific pdfTEX primitives

The above-described primitives are general commands for PDF control. The
following ones are intended for creating hyperlinks, bookmarks, etc. They are
necessary only when one wants to control PDF output at a low level in order to
achieve exactly what the user wishes. A PDF reference manual is required when
using these commands. Users that do not want to read the manual can look at
examples and macros in pdfTEX distribution, of course with some limitation.
LATEX users can use hyperref package with pdfTEX without bothering how
these primitives work.

\pdfannottext 〈rule specification〉 [attr〈balanced text〉] 〈balanced text〉: a
command to create text annotations. 〈rule specification〉 designates the

206 Hàn Thé̂ Thành

dimensions of the annotation. The default dimensions for a text annota-
tion are zero for depth and 1 inch for both width and height. The 〈balanced
text〉 following attr specifies additional attributes for the annotation.
The only meaningful attributes for a text annotation are /Open true
or /Open false, specifying that the text annotation will be implicitly
opened or closed (default). The second 〈rule specification〉 is the text
title of the annotation.

\pdfannotlink 〈rule specification〉 [attr〈balanced text〉] 〈action specifica-
tion〉: command specifying the beginning of a link annotation (hyperlink).
〈rule specification〉 designates the dimensions similarly to text annotation.
However the default dimensions for link annotation are different from
those for text annotation. If they are not specified explicitly then height
and depth are taken from the box containing the link, and width is treated
as a “running” one, meaning that all the following boxes in the same nest-
ing depth relative to the outermost box will be treated as a part of the
link annotation until a \pdfendlink (explained below) is encountered.
Thus a link annotation may be several lines long, or even several pages
long. The 〈balanced text〉 following attr specifies additional attributes
for link annotation similarly to text annotation. A lot of attributes for
link annotation can be specified here, but their use requires consultation
of the PDF-1.2 reference manual. The most useful ones are colour and
border attributes. Colours are given as /C [x y x], where x y z are
values in the range 0..1 specifying RGB components of a given colour.
Borders are specified as /Border [0 0 w], where w is the width (in bp)
of the border. 〈action specification〉 describes the action that should be
executed when the link annotation is activated. The syntax of 〈action
specification〉 is a little complicated.
〈action specification〉 → 〈goto action〉|〈thread action〉|

〈page action〉|〈user-defined action〉
〈goto action〉 → goto〈file〉〈identifier〉
〈thread action〉 → thread〈file〉〈identifier〉
〈file〉 → file〈file name〉|〈empty〉
〈identifier〉 → 〈num identifier〉|〈name identifier〉
〈num identifier〉 → num〈integer number〉
〈name identifier〉 → name〈balanced text〉
〈page action〉 → page〈integer number〉〈balanced text〉
〈user-defined action〉 → user〈balanced text〉
〈goto action〉 and 〈thread action〉 define, respectively, a “jump” to desti-
nation and thread given by 〈file〉 and 〈identifier〉. If 〈file〉 is not empty
then it will be an “external jump” to the given file. Destinations and
threads can have a num or name identifier.

The pdfTEX Program 207

〈page action〉 defines a “jump” to the page given by 〈integer number〉.
Text specified in 〈balanced text〉 can be /Fit (fit whole page in window),
/FitH y (fit whole width of page, y is the y-coordinate corresponding
to the top of the window), /FitV x (fit whole height of page, x is the
x-coordinate corresponding to the left of the window), /FitB, /FitBH,
/FitBV (similar to the first three but fit the bounding box of the page
instead of the whole page).
〈user-defined action〉 defines an action other than the above-mentioned
ones. Its use also requires consultation of the PDF reference manual. The
typical use is URI action, for instance
user{/S /URI /URI (http://www.tug.org/)}
to open a URL in a WWW browser, or Named action,
user{<< /S /Named /N /GoBack >>} to navigate the document.

\pdfendlink: a command to end the link annotation started by
\pdfannotlink. \pdfendlink must be in the box with the same nesting
depth considering to the outermost box.

\pdfdest 〈identifier〉 〈fit specification〉: a command to define a destination.
〈identifier〉 is similiar to 〈action specification〉. 〈fit specification〉 can be
fit, fith, fitv, fitb, fitbh or fitbv, which correspond to specification
of 〈page action〉.

\pdfthread 〈identifier〉: a command to start a thread. Dimensions of the
thread are calculated from the box containing the thread. Similiarly to
link annotation, all next boxes in the same nesting depth will be treated
as part of the thread annotation until a \pdfendthread is searched.

\pdfendthread: this command is similiar to \pdfendlink, but used for
threads.

\pdfthreadhoffset: dimension parameter specifying the horizontal margin
when a thread is displayed.

\pdfthreadvoffset: this parameter is similiar to \pdfthreadhoffset, but
intended for vertical margins.

\pdfoutline 〈action specification〉 [num 〈integer number〉] 〈balanced text〉: a
command to create an outline entry (bookmark). 〈action specification〉
is similiar to the link annotation, the absolute value of 〈integer number〉
is the number of direct sub-entries (default value is 0). If this number is
negative then all sub-entries will be closed, otherwise they will be opened
explicitly. 〈balanced text〉 is the text title for this entry.

208 Hàn Thé̂ Thành

6. Running pdfTEX

Running pdfTEX consists of the following steps1.

6.1. Fetching the binaries

It is possible to download the binaries of pdfTEX, or build it from its sources.
Both binaries and sources of pdfTEX are available on CTAN. Building pdfTEX
from sources is similiar to web2c and it should be easy for any UNIX platform.

6.2. Setting paths

In addition to the variables required by normal TEX, the following extra ones
need to be set in order to run pdfTEX. The simplest way to do this is to edit
the web2c configuration file texmf.cnf.

VFFONTS: paths where pdfTEX looks for virtual fonts.
T1FONTS: paths where pdfTEX looks for Type 1 and TrueType fonts.
TEXPSHEADERS: paths where pdfTEX looks for font map file (pdftex.map),

PNG pictures and encoding files (*.enc). pdftex.map and *.enc are in-
cluded in pdfTEX distribution and must be installed to one of the direc-
tories specified in TEXPSHEADERS.

Apart from that the pdfTEX pool file (pdftex.pool) must be placed in paths
where TEX (pdfTEX) looks for pool file (specified by variable TEXPOOL). It
may be necessary to increase memory usage specified in texmf.cnf to run
pdfTEX.

6.3. Creating format files

Creating formats is similar to normal TEX. Under UNIX, this may look like:

pdftex -i plain \\dump
mv plain.fmt pdftex.fmt

pdftex -i latex.ltx
mv latex.fmt pdflatex.fmt

1 As far as pdfTEX is actually based on web2c, all the settings are web2c-specific.

The pdfTEX Program 209

After that it is necessary to place the formats in a directory where TEX (pdfTEX)
looks for format files. Also a binary copy of pdfTEX with name pdflatex is
needed to run pdfLATEX.

6.4. Working runs

The simplest example is the classic “Hello, world!”:

\pdfoutput=1
Hello, world!
\bye

Running pdftex on a file containing these lines (let’s say hello.tex) should
produce a PDF file:

$pdftex hello
This is PDFTeX, Version 0.11 (based on TeX Version 3.14159) (Web2c 7.0)
(hello.tex [1])
</packages/share/pdftex/texmf/dvips/pdftex/cmtext.enc>
</package s/share/tex/lib/fonts/public/bakoma/type1/cmr10.pfb>
Output written on hello.pdf (1 page, 7337 bytes).
Transcript written on hello.log.

More useful examples can be found in the pdfTEX distribution, including the
generic example example.tex, macros for creating hypertexted PDF from
texinfo documents (pdftexinfo.tex) as well as from programs written in
WEB (pdfwebmac.tex, and a config file (pdftex.def) for using pdfTEX with
LATEX hyperref, graphics and colour packages

7. Conclusions

Although pdfTEX is still under development, it has already acquired a number
of keen and interested users, many of whom are contributing to its further
development by their feedback, ideas and suggestions. The author very much
hopes that readers of this article will be sufficiently interested to try pdfTEX
for themselves, and that they too will then join the enthusiastic group of users
whose input is so vital to the success of the project.

210 Hàn Thé̂ Thành

Acknowledgements

The author would like to thank his supervisor, Prof. Jǐŕı Zlatuška, for suggesting
pdfTEX in the first place, as well as for his much-appreciated assistance and
support throughout the life of the project.

Many people on the pdfTEX mailing list have contributed a great deal to the
development, by testing, by making suggestions, and by their discussion of and
work on the project: in particular the names of Sebastian Rahtz, Hans Hagen
and Philip Taylor come to mind. Many others—too many to be named here—
have contributed a great deal, and of my own colleagues within the CSTUG
community I would like to single out Petr Sojka and Petr Oľsák for especial
thanks.

This paper has been reviewed by Bernd Raichler, who has given me many useful
suggestions and comments to improve the structure as well as the contents of
the article. Philip Taylor is extremely appreciated for linguistic editing and
improving this paper.

Finally the author would like to thank T V Raman and Adobe Systems Incor-
porated for their financial support during a six-month scholarship.

Bibliography

[1] Tim Bienz, Richard Cohn, and James R. Meehan. Portable Document
Format Reference Manual. Adobe Systems Incorporated.
http://www.adobe.com/supportservice/devrelations/PDFS/TN/
PDFSPEC.PDF

[2] Philip Taylor. A pragmatic approach to paragraphs.
TUGboat, 14(2), 1993.

[3] Philip Taylor. Improving the æsthetics of mixed-font documents.
TUGboat, 12(1), 1991.

[4] Hermann Zapf. About micro-typography and the hz-program.
Electronic Publishing, 6(3), 1993, 283–288.

